Лекция 17 Сквозное распознавание речи
12.1. Введение
В гл. 8 мы стремились создать систему ASR, разделив основное уравнение
W∗ = argmaxW∈V∗ P (W | X) (12.1)
в акустическую модель, модель лексики и языковую модель с помощью теоремы Байеса. Этот подход в значительной степени зависит от использования предположения об условной независимости и отдельных процедур оптимизации для разных моделей.
Глубокое обучение было впервые включено в статистическую структуру путем замены моделей смеси Гаусса для прогнозирования фонетических состояний на основе наблюдений.
Одним из недостатков этого подхода является то, что гибридные модели DNN / HMM полагаются на обучение каждого компонента отдельно. Как было замечено ранее в других сценариях, отдельный процесс обучения может привести к неоптимальным результатам из-за отсутствия распространения ошибок между моделями. В ASR эти недостатки проявляют себя как чувствительность к шуму и колебаниям динамика. Применение глубокого обучения для сквозного ASR позволяет модели учиться на данных вместо того, чтобы полагаться на тщательно спроектированные функции, позволяя моделям учиться непосредственно на данных. Таким образом, были некоторые подходы к обучению моделей ASR сквозным способом. Сквозные методы вместо этого пытаются оптимизировать количество P (W | X) напрямую, а не разделяя их.
При сквозном моделировании пара вход-цель должна быть только речевым высказыванием и лингвистическим представлением транскрипта. Возможны многие представления: телефоны, телефоны, символы, n-граммы символов или слова. Учитывая, что ASR фокусируется на создании словесных представлений из речевого сигнала, слова являются более очевидным выбором; Однако есть и недостатки. Размер словаря требует больших выходных слоев, а также примеров каждого слова в обучении, что приводит к гораздо более низкой точности, чем другие представления. Совсем недавно сквозные подходы перешли к использованию символов, символьных n-граммов и некоторых моделей слов, а также при наличии достаточного количества данных. Эти пары данных может быть проще создать, что снижает требования к лингвистическим знаниям при создании фонетических словарей. Совместная оптимизация извлечения признаков и последовательных компонентов дает множество преимуществ, в частности: меньшая сложность, более быстрая обработка и более высокое качество.
Ключевой компонент для выполнения сквозного ASR требует метода замены HMM для моделирования временной структуры речи. Самые распространенные методы - это КТК и внимание. В этой главе компоненты традиционного ASR заменяются методами сквозного обучения и декодирования. Мы начнем с представления CTC, метода обучения невыровненных последовательностей. Затем мы исследуем некоторые архитектуры и методы, которые использовались для обучения сквозных моделей. Затем мы рассмотрим внимание и способы его применения к сетям ASR и некоторым архитектурам, которые были обучены этим методам. Следуя за вниманием, мы обсуждаем многозадачные сети, обученные как CTC, так и вниманием. Мы исследуем общие методы декодирования для CTC и внимания во время вывода, включая языковые модели для улучшения качества прогнозирования. Наконец, мы обсуждаем встраивание и неконтролируемые методы, а затем заканчиваем тематическим исследованием, включающим как CTC, так и сеть внимания.
12.2. Коннекционистская временная классификация (CTC)
Модели DL-HMM полагаются на выравнивание лингвистических единиц со звуковым сигналом, чтобы обучить DNN классифицировать как фонемы, сеноны или состояния трифона (прямо заявлено, что эта последовательность акустических характеристик должна дать этот фон). Получение этих выравниваний вручную может быть чрезмерно дорогостоящим для больших наборов данных. В идеале расклад не потребуется для пары высказывание-расшифровка. Временная классификация коннекционистов [Gra + 06] была введена, чтобы обеспечить метод обучения RNN для «маркировки несегментированных последовательностей напрямую», а не многоэтапного процесса в гибридном режиме.
Дан акустический вход X = [x1, x2, ..., xT] акустических характеристик с желаемой выходной последовательностью Y = [y1, y2, ..., yU]. Точное выравнивание X и Y неизвестно, и существует дополнительная изменчивость в соотношении длин X и Y, обычно с T U (рассмотрим случай, когда в аудио есть период тишины, что дает более короткую расшифровку).
Как можно построить возможные выравнивания для пары (X, Y)? Простое теоретическое согласование, показанное на рис. 12.1, иллюстрирует потенциальный метод, в котором каждому входу xt назначен выход, а повторяющиеся выходы объединяются в одно предсказание.
Такой подход к выравниванию имеет две проблемы: во-первых, при распознавании речи входные данные могут иметь периоды молчания, которые напрямую не совпадают с назначенными выходными данными.
Во-вторых, у нас никогда не может быть повторяющихся символов (таких как две буквы «l» в слове «hello»), потому что они объединяются в одно предсказание.
Алгоритм CTC устраняет проблемы этого наивного подхода, вводя пустой токен, который действует как нулевой разделитель. Этот токен удаляется после повторного сворачивания. Этот маркер удаляется после сворачивания повторяющихся прогнозов, что позволяет повторять последовательности и периоды «молчания». Таким образом, пустой токен не включается в вычисление или декодирование потерь; тем не менее, он позволяет прямое выравнивание между входом и выходом без принудительной классификации выходного словаря. Обратите внимание, что пустой токен отделен от пробела, который используется для обозначения разделения слов. На рисунке 12.2 показан пример выравнивания CTC.
[image:]
Рис. 12.1: Простое выравнивание для входа X и длины 6 и выхода Y = [c, a, t]. Пример из [Han17]
[image:]
Рис. 12.2: Выравнивание CTC для входа X и выхода Y = [h, e, l, l, o,, w, o, r, l, d]. Обратите внимание, что пустой токен представлен буквой «ε», а символ пробела - подчеркиванием «».
В этом выходном представлении существует выравнивание 1: 1 между длинами входной и выходной последовательностей. Кроме того, введение пустого токена подразумевает, что может быть много прогнозируемых выравниваний, которые приводят к одному и тому же результату. Например:
[h, e, l, ε, l, o, ε] → «привет»
[h, ε, e, l, ε, l, o] → «привет»
Поскольку любой токен на выходе может иметь ε до или после, мы можем представить желаемую выходную последовательность, имеющую ε до и после каждой метки.
Y = [ε, y1, ε, y2, ..., ε, yU]
Множественные пути / трассы могут дать правильное решение, поэтому необходимо рассмотреть все правильные решения. Сам алгоритм CTC «не требует согласования»; однако эти «псевдо-выравнивания» используются для вычисления вероятности возможных выравниваний.
Затем он создает выходное распределение по всем возможным Y, которое можно использовать для вывода вероятности конкретного выхода, Y. Условная вероятность, P (Y | X), вычисляется путем суммирования всех возможных выравниваний между входом и вывод, как показано на рис. 12.3.
[image:]
Рис. 12.3: Допустимые пути CTC для целевой последовательности, Y = [a, b]. Обратите внимание, что пустой токен, ε, удален из последней последовательности. Следовательно, есть два возможных начальных состояния, ε и ja, и два возможных конечных состояния, ε и b. Кроме того, для достижения окончательного результата переход от epsilon должен быть к самому себе или к следующему токену в последовательности, в то время как переход от a может быть к самому себе, ε или b
Математически мы можем определить условную вероятность единственного выравнивания αt как произведение каждого состояния в последовательности:
P (α | X) = ∏Tt=1P (αt | X) (12.2)
Все пути считаются взаимоисключающими, поэтому мы суммируем вероятность всех совпадений, давая условную вероятность для одного высказывания (X, Y):
P (Y | X) = ∑A∈AX,Y∏Tt=1P (αt | X) (12.3)
где AX, Y - набор допустимых выравниваний. Динамическое программирование используется для улучшения вычисления функции потерь CTC. Предоставляя пустые токены вокруг каждой метки в последовательности, пути можно легко сопоставить и объединить, когда они достигают одного и того же выхода на одном временном шаге.
Объединение всего дает функцию потерь для CTC.
LCTC (X, Y) = −log ∑a∈AX, Y∏Tt=1P (αt | X) (12.4)
Градиент обратного распространения может быть вычислен для каждого временного шага из вероятностей в каждом кадре.
CTC предполагает условную независимость между каждым временным шагом, поскольку выходной сигнал на каждом временном шаге не зависит от предыдущих временных шагов. Хотя это свойство допускает покадровое распространение градиента, оно ограничивает возможность изучения последовательных зависимостей. Использование языковой модели (раздел 12.5.2) снимает некоторые проблемы, путем предоставления контекста слова или n-граммы.
12.2.1. Сквозное распознавание фонем
CTC изначально успешно справился с задачей распознавания фонем TIMIT [ZSG90] [GMH13]. Были исследованы различные архитектуры, обученные с помощью CTC, что позволило добиться высочайшего уровня производительности при выполнении задачи. Архитектура сопоставила функции банка фильтров Mel с фонетической последовательностью с единой сквозной сетью. Авторы исследовали однонаправленные и двунаправленные RNN. Многослойная двунаправленная архитектура LSTM дала наилучшие результаты. Двунаправленные RNN, казалось, позволяли сети использовать контекст всего высказывания, а не только прямой контекст.
При обучении этой сети авторы использовали два метода регуляризации: весовой шум и ранняя остановка. Весовой шум добавляет гауссовский шум к весам во время обучения, чтобы уменьшить переобучение конкретным последовательностям. Эти методы регуляризации оказались решающими для обучения сети.
12.2.2. Глубокая речь
После успеха CTC в распознавании фонем другие пытались использовать его с различными выходными представлениями. Архитектура Deep Speech (DS1) [Han + 14a] была обучена предсказывать последовательность вероятностей символов для создания транскрипции непосредственно из звуковых функций (в данном случае спектрограммы). Сеть Deep Speech состояла из архитектуры DNN с тремя полностью связанными уровнями, одним двунаправленным уровнем LSTM, который занял место HMM, и полностью подключенным выходным слоем softmax, который классифицирует предсказания как один из символов алфавита. Входной слой полагался на кадры из спектрограммы, a центральная рамка с набором из 5–9 контекстных рамок с каждой стороны. Иллюстрация этой архитектуры показана на рис. 12.4.
[image:]
Рис. 12.4: Модель RNN, использованная в исходной статье Deep Speech. Архитектура включает один двунаправленный слой LSTM после трех полностью связанных слоев, которые опираются на функции входной спектрограммы.
Учитывая сложность сквозного сопоставления с символами, важной составляющей успеха Deep Speech стал размер набора данных: 5000 часов от 9600 говорящих. Несмотря на увеличение размера набора данных, регуляризация по-прежнему важна для обобщения сети, поэтому модели были обучены с исключением, а также с увеличением данных. Техника, вдохновленная «дрожанием» компьютерного зрения была использована, переводя аудиофайл на 5 мс вперед и назад. Выходные вероятности для примеров с дрожанием усредняются перед обратным распространением.
Одним из захватывающих компонентов работы с Deep Speech является то, что модель RNN может изучать легкую языковую модель на уровне символов во время процедуры обучения, создавая «читаемые» транскрипты даже без языковой модели. Ошибки, которые появляются, как правило, связаны с фонетическими ошибками в написании слов, например, bostin вместо boston.
12.2.2.1. Параллелизм графического процессора
Учитывая размер набора данных и вычислительные требования архитектуры, для облегчения обучения потребовалось несколько графических процессоров. Работа с Deep Speech сыграла решающую роль в преодолении многих инженерных проблем, таких как обучение на больших наборах данных.
Многие статьи в статье были сосредоточены на масштабировании обучения архитектуры на нескольких графических процессорах. Для обучения моделей на нескольких графических процессорах использовались два типа параллелизма: параллелизм данных и параллелизм моделей. Параллелизм данных направлен на сохранение копии архитектуры на каждом графическом процессоре, разделение большого обучающего пакета на отдельные графические процессоры, выполнение шагов прямого и обратного распространения для отдельных данных и, наконец, агрегирование обновлений градиента для всех моделей. Параллелизм данных обеспечивает почти линейное масштабирование в зависимости от количества графических процессоров (это может повлиять на скорость сходимости из-за эффективного размера пакета). Второй тип параллелизма - это параллелизм моделей. Параллелизм модели фокусируется на разделении модели слоя и распределение слоев по набору доступных графических процессоров. Включение параллелизма моделей может быть затруднено при работе с рекуррентными нейронными сетями из-за их последовательной природы. В архитектуре Deep Speech авторы добились параллелизма моделей, разделив модель пополам по временному измерению. Эти решения позволили авторам тренироваться на 5000 часах звука и достичь самых современных результатов на двух тестах с шумной речью.
12.2.3. Глубокая речь 2
В Deep Speech 2 (DS2) [Amo + 16], следующем за Deep Speech, авторы расширили исходную архитектуру для выполнения сквозного распознавания речи на основе символов. Авторы проверили методы моделирования для транскрипции на английском и китайском языках. Модификации Deep Speech 2 представили множество улучшения исходной архитектуры, а также инженерные оптимизации, достигающие 7-кратного ускорения по сравнению с исходной реализацией Deep Speech. На рисунке 12.5 показана архитектура обновлений.
[image:]
Рис. 12.5: Архитектура Deep Speech 2 включает сверточные слои, которые изучают особенности из спектрограмм высказываний и значительно увеличивают глубину
Основное различие архитектур Deep Speech и Deep Speech 2 - это увеличение глубины. В работе Deep Speech 2 было исследовано множество различных архитектур, в которых количество сверточных слоев варьировалось от 1 до 3, а количество повторяющихся слоев - от 1 до 7. Оптимальная архитектура DS2 для транскрипции английского языка включала 11 уровней (3 сверточных, 7 двунаправленных). повторяющийся и 1 полносвязный слой). Пакетная нормализация включена после каждого слоя (кроме полностью связанного слоя), а также было включено градиентное отсечение для улучшения сходимости. Общая архитектура содержала примерно 35 миллионов параметров.
С включением языковой модели n-грамм это приводит к относительному улучшению WER на 43,4% по сравнению с уже конкурентоспособной архитектурой DS1.
Другими ключевыми компонентами улучшений Deep Speech 2 были методы обучения и дальнейшее увеличение размера набора данных. Обучение может быть нестабильным на ранней стадии моделей СТС. Авторы используют учебный план для повышения устойчивости модели при обучении. Выбирая сначала более короткие высказывания, модель может извлечь выгоду из меньших обновлений градиента в более ранней части первой эпохи. Кроме того, авторы увеличили размер набора данных до 12 000 часов в Deep Speech 2. Они отмечают, что масштабирование данных уменьшает WER на 40% для каждого 10-кратного увеличения размера обучающего набора.
12.2.4. Wav2Letter
Wav2Letter [CPS16] расширяет сквозные модели до сетей только с CNN. Эта работа показала конкурентоспособные результаты по сравнению с другими сквозными сетями, такими как Deep Speech 2, с полностью сверточной сетью, работающей на MFCC и функциях спектра мощности. CNN была обучена с помощью CTC и достигли значительного увеличения скорости с возможностью декодирования в реальном времени.
После обучения сети промежуточные одномерные сверточные слои добавляются между входным и начальным сверточными слоями. Затем вход в сеть был изменен на необработанный сигнал с целью обучения созданию функций, аналогичных используемым первоначально MFCC. После обучения этих уровней вся сеть обучается совместно для сквозной оптимизации. Сквозная сеть, работающая на необработанном сигнале, показала умеренное ухудшение точности, даже несмотря на то, что работала непосредственно на сигнале.
Авторы также исследовали новую функцию потери последовательности, называемую критерием автоматической сегментации (ASG), в дополнение к CTC. В ASG нет пустой метки, нет нормализованных оценок на узлах и нет глобальной нормализации вместо нормализации на уровне кадра. Мы можем вспомнить, что мы используем пробел для разделения двойных букв.
Вместо этого ASG включает дополнительный символ специально для повторения (например, «привет» можно представить, как «hel2o»).
Удаление RNN из архитектуры делает прогнозы гораздо менее затратными с точки зрения вычислений, а также позволяет осуществлять потоковую транскрипцию (свертки проходят через вход, чтобы отображать выходные данные на каждом временном шаге). В последующей работе над Wav2Letter ++ [Pra + 18] авторы улучшили скорость системы ASR, добившись линейного масштабирования времени обучения (до 64 GPU).
[image:]
Рис. 12.6: Архитектура Wav2Letter для распознавания необработанного сигнала. Первый уровень не включается при обучении на MFCC вместо необработанного сигнала. Сверточные параметры организованы как (kw, dw, dim ratio), где kw - ширина ядра, dw - шаг ядра, а dim ration - это количество входных измерений к количеству выходных измерений.
12.2.5. Расширения CTC
CTC предоставляет элегантный способ вычисления псевдо-выравнивания не выровненных последовательностей; однако у предположения о независимости от кадра есть недостатки. Были введены различные методы, чтобы ослабить предположение о кадровой независимости.
Наиболее заметными являются Gram-CTC и датчик RNN.
12.2.5.1. Грамм-СТС
Gram-CTC [Liu + 17] расширил алгоритм CTC для адресации фиксированного алфавита и фиксированной целевой декомпозиции. Этот подход сосредоточен на обучении предсказанию n-граммов символов, а не отдельных символов, что позволяет модели выводить несколько символов на заданном временном шаге. Использование символьных n-граммов может слегка смягчить последствия предположения о независимости от кадра из-за необходимости изучать несколько меток вместе.
Работа также экспериментировала с автоматическим изучением n-граммов символов (называемых «граммами») во время процесса обучения, используя алгоритм прямого-обратного обучения. Хотя возможно совместное изучение граммов и транскрипции, модель должна изучать выравнивание и разложение цели в тандеме, и обучение становится нестабильным. Многозадачное обучение используется для борьбы с этой нестабильностью путем совместной оптимизации CTC и Gram-CTC. В целом включение граммов привело к улучшениям для нескольких наборов данных, даже когда граммы были выбраны вручную.
12.2.5.2. Датчик RNN
Преобразователь RNN [Gra12] расширяет CTC, предполагая локальное и монотонное выравнивание между входной и выходной последовательностями. Этот подход смягчает предположение об условной независимости CTC за счет включения двух уровней RNN, которые моделируют зависимости между выходными данными на разных временных шагах.
PRNN − T (Y | X) = ∑a∈AX, Y P (a | h) =
 ∑a∈AX, Y ∏Тt = 1P (at | ht, y1: ut −1) (12.5)
где ut означает временной шаг вывода, согласованный с временным шагом t ввода. T - длина последовательности выравнивания, включая предсказанное количество пустых меток. Обратите внимание, что y1: u - это последовательность прогнозов, исключая пробелы, до временного шага u. RNN включает полную историю непустых меток в прогноз CTC на следующем временном шаге. Обучение модели RNN-T требует использования алгоритма прямого-обратного обучения для вычисления градиентов (аналогично вычислению CTC). При онлайн-распознавании речи однонаправленная RNN может использоваться для моделирования зависимостей между временными шагами в прямом направлении.
12.3. Seq-to-Seq
Успех моделей от последовательности к последовательности в машинном переводе побудил их применение в распознавании речи. Одно из наиболее значительных преимуществ моделей seq-to-seq в распознавании речи состоит в том, что они не полагаются на CTC для обучения, что изначально снижает допущение CTC о кадровой независимости. Обычно при распознавании речи существует большое количество временных шагов на входе и выходе, что делает невозможным обучение базовых моделей seq-to-seq с одним скрытым состоянием, представляющим полное высказывание.
Вместо этого используется подход, основанный на внимании, который может напрямую моделировать вероятность выходной последовательности:
P (Y | X) = ∏Uu = 1P (yu | y1: u − 1, X) (12.6)
Это количество можно оценить с помощью целевой функции на основе внимания из [Bah + 16c]:
ht = Encoder (X)
aut = ContentAttention (qu−1, ht)
 LocationAttention ({au − 1}Tt = 1, qu − 1, ht)
cu = ∑Tt = 1autht
P (yu | y1: u − 1, X) = Decoder (cu, qu − 1, yu − 1) (12.7)

Нейронная сеть кодировщика создает скрытое представление ht акустического входа, а декодер создает транскрипт на выходе из закодированной последовательности. Вес внимания aut используется для вычисления вектора контекста cu для декодера. Скрытое состояние декодера qu обеспечивает совокупный контекст предсказаний декодера для следующего предсказания. Здесь мы рассматриваем два типа внимания: внимание, основанное на содержании, и внимание, ориентированное на местоположение [Cho + 15c].
12.3.0.1. Внимание, основанное на содержании
Основанное на содержании внимание изучает весовой вектор g и два линейных слоя, W и V (без параметров смещения), чтобы взвесить предыдущий прогноз и скрытое состояние кодера ht. Это представлено следующим образом:
eut = gT tanh (Wqu − 1 + Vht) (12.8)
aut = Softmax ({eut}Tt = 1) (12.9)
12.3.0.2. Внимание с учетом местоположения
Внимание с учетом местоположения - это расширение для поддержки свертки. Эта функция учитывает выравнивание на предыдущем шаге. Это можно определить, как:
{ft}Tt = 1 = K ∗ au − 1 (12.10)
где ∗ представляет собой одномерную операцию свертки по оси времени t со сверточной матрицей K. Линейный слой U также научился отображать выходные объекты ft в пространство признаков.
eut = gT tanh (Wqu − 1 + Vht + Uft) (12.11)
aut = Softmax ({eut}Tt = 1) (12.12)
Одной из трудностей обучения сетей на основе внимания является одновременная оптимизация:
· веса кодировщика,
· механизм внимания для вычисления правильного выравнивания, и
· веса декодера.
Динамика сети усложняет задачу, особенно на ранних этапах, когда регуляризация является ключевым компонентом этих моделей.
12.3.1. Ранняя последовательная ASR
Внимание было успешно применено в [BCB14a], расширив работу в области компьютерного зрения [MHG + 14] на задачу машинного перевода на кодер-декодер RNN из [Cho + 14].
[Bah + 16c] применяет последовательную последовательность для распознавания речи. Механизм внимания в этой работе сосредоточил декодер на диапазоне выходов кодера. Внимание не только помогло сходимости модели, но и уменьшило время обучения (рис. 12.7, 12.8 и 12.9).
[image:]
Рис. 12.7: Сквозная модель ASR на основе внимания из [Bah + 16c]
12.3.2. Слушать, посещать и заклинать (LAS)
Сеть прослушивания, присутствия и заклинания (LAS) [Cha + 16b] использовала пирамиду BiLSTM для кодирования входной последовательности, называемой слушателем. Декодером была ориентированная на внимание RNN для предсказания символов.
Недостатком моделей seq-to-seq является то, что их труднее обучать (в большей степени, чем CTC) и медленнее во время вывода. Декодер не может предсказать, пока механизм внимания не взвесит все предыдущие скрытые состояния для каждого нового временного шага. Для решения этой проблемы были введены некоторые методы, такие как механизмы управления окнами для уменьшения количества временных шагов, учитываемых при декодировании, и сглаживание меток, что предотвращает чрезмерную уверенность в прогнозах.
Одна из других трудностей для моделей seq-to-seq заключается в том, что они не могут использоваться в режиме полной потоковой передачи онлайн. Перед началом декодирования необходимо закодировать весь контекст.
В [VDO + 16] архитектура Wav2Text использовала модель CNN-RNN с вниманием к предсказанию символьных транскриптов непосредственно на необработанной форме волны. Кодер представляет собой сверточную архитектуру в сочетании с двумя двунаправленными LSTM, а декодер - это одинарный двунаправленный LSTM. Сверточные слои используются в основном для уменьшения размерности входных данных. Из-за дополнительной сложности внимания и использования необработанной формы сигнала сеть была обучена посредством передачи обучения. Первоначально только нижние уровни кодировщика предсказывают спектральные характеристики (MFCC и спектрограмма логарифмической шкалы Mel) как целевые из необработанного входного сигнала.
Затем сеть обучается этим функциям с помощью кодировщика-декодера на основе внимания с CTC для создания расшифровки.
12.4. Многозадачное обучение
Многие недостатки внимания и CTC привели к многозадачным подходам к обучению.
Внимание обычно лучше проявляется в сквозных сценариях; тем не менее, он обычно испытывает трудности с конвергенцией и имеет тенденцию страдать в шумной среде. CTC, с другой стороны, обычно дает более низкое качество из-за предположения об условной независимости, но является более стабильным. Компромисс между CTC и вниманием делает их сочетание очень ценным для многозадачного обучения. ESPnet [KHW17, Xia + 18] обучен для этого: совместная оптимизация модели кодировщика-декодера, основанной на внимании, с CTC и вниманием.
Потери при обучении для ESPnet - это многоцелевые потери (MOL), определяемые как:
LMOL = λ logPctc (C | X) + (1 − λ) logP∗att (C | X) (12.13)
где λ - вес для каждой функции потерь, а 0 ≤ λ ≤ 1. Pctc - это цель CTC, а P ∗ att - цель внимания.
[image:]
Рис. 12.8: Сквозная модель ASR на основе внимания из [Cha + 16b] с использованием пирамидальных LSTM в кодере
[image:]
Рис. 12.9: Сеть сквозной обработки речи из [KHW17]
Архитектура ESPnet использует четырехуровневый двунаправленный кодировщик LSTM и одноуровневый декодер LSTM. Чтобы уменьшить количество временных шагов вывода, два верхних уровня кодировщика считывают каждое второе состояние, что уменьшает длину вывода h в 4 раза.
12.5. Сквозное декодирование
CTC и модели на основе внимания являются сквозными, производя расшифровку непосредственно из акустических характеристик. Хотя у них есть возможность изучать модели внутреннего языка во время обучения, количество языковых данных, видимых во время обучения, относительно невелико. В большинстве случаев процедуры декодирования могут улучшить предсказания, и во многих случаях значительно улучшают процент ошибок слов. Желательным состоянием является включение дополнительной информации во время процесса декодирования для улучшения предсказаний с использованием поиска луча и языковой модели. Поиск луча может включать более широкий контекст в прогнозы, в то время как языковые модели могут принимать преимущество больших текстовых корпусов, которые могут не иметь пар произнесения и транскрипции.
В [Hor + 17] представлены два метода декодирования комбинированной модели CTC – внимание. Первый подход восстанавливает предсказания, а второй метод выполняет однопроходное декодирование, включая вероятности из каждого из предсказаний внимания и CTC.
В [HCW18] авторы включают словарные и символьные языковые модели RNN в процедуру декодирования.
12.5.1. Языковые модели для ASR
Процесс декодирования можно расширить, предоставив априорную версию языка в форме языковой модели. Эти языковые модели можно обучить на больших объемах текстовых данных, чтобы точно смещать предсказанные расшифровки в определенные области.
12.5.1.1. Н-грамм
В статье Deep Speech 2 авторы экспериментировали с языковыми моделями n-грамм. Хотя уровни RNN, включенные в архитектуру, изучают неявную языковую модель, она имеет тенденцию ошибаться при омофоне и написании определенных слов. Таким образом, языковая модель ngram была обучена с использованием набора инструментов KenLM [Hea + 13] в репозитории Common Crawl,1) с использованием 400 000 наиболее часто используемых слов из 250 миллионов строк текста.
На этапе декодирования используется поиск луча для оптимизации количества:
Q (Y) = log (PCTC (Y | X)) + α log (PLM (Y)) + β γ (Y) (12.14)
где γ (Y) - количество слов в Y. Вес α влияет на вклад языковой модели, а вес β смещает прогнозы, чтобы иметь больше слов. Оба параметра настраиваются на отладочном наборе.

1) http://commoncrawl.org.
Языковая модель была включена в декодирование поиска луча и значительно улучшила базовый WER по сравнению с базовыми линиями безъязыковой модели.
12.5.1.2. Языковые модели RNN
Языковые модели RNN неоднократно появлялись в этой книге. Применение языковых моделей RNN основано на использовании вероятности следующего слова для предсказания наиболее вероятной последовательности слов с учетом предыдущего слова.
Эти модели могут быть включены в качестве дополнительной оценки во время декодирования луча таким же образом, как языковая модель n-грамм, или в качестве повторной оценки первых n гипотез.
Модели на основе Word страдают от проблемы OOV, но они успешно превзошли модели CTC на основе фонем при обучении на очень больших наборах данных (125 kh) [SLS16].
Это ограничение побудило исследователей использовать предсказание на основе символов при обнаружении терминов OOV [Li + 17].
12.5.2. Декодирование CTC
Декодирование сети CTC (сеть глубокого обучения, обученная с помощью CTC) относится к поиску наиболее вероятного результата для классификатора во время логического вывода, аналогичного по духу декодированию HMM. Математически процесс декодирования описывается функцией h (x):
h (x) = argmaxl∈L≤TP (l | x) (12.15)
В исходной публикации временной классификации коннекционистов [Gra + 06] были предложены два метода: декодирование наилучшего пути и декодирование с поиском префикса.
Декодирование наилучшего пути, также известное как жадное декодирование, выводит наиболее вероятный результат на каждом временном шаге. Для получения полезной строки повторяющиеся символы затем сворачиваются, а пустой токен удаляется, чтобы получить гипотезу h.
h (x) = B (π∗)
π∗ = argmaxπ∈Nt p (π | x) (12.16)

Эта схема декодирования проста. Однако маловероятно, что будет получена лучшая последовательность, поскольку при этом не учитываются множественные пути для получения одного и того же выравнивания.
Поиск луча может быть включен в процесс декодирования для улучшения предсказания. При поиске луча вероятности путей, ведущих к одному и тому же результату, можно суммировать, что дает более высокую вероятность этого результата. Алгоритм 1 показывает процесс декодирования поиска луча с ∅, представляющим пустую последовательность, и набор лучей B.
Алгоритм 1: поиск луча CTC
Input: B ← {∅};
P (∅,0) ← 1
Result: maxY∈B P 1
|Y| (Y,T)
begin
for t = 1 ...T do
Bˆ ← the W most probable sequences in B
B ← {}
for y ∈ Bˆ do
if y = ∅ then
P+(Y,t) ← P+(Y,t −1)P(Ye,t|x)
if yˆ ∈ Bˆ then
P+(Y,t) ← P+(Y,t)P(Ye,Yˆ,t)
P−(Y,t) ← P+(Y,t −1)P(−,t|x)
Add Y to B
for k = 1...K do
P−(Y +k,t) ← 0
P+(Y +k,t) ← P(k,Y,t)
Add (Y +k) to B

Алгоритм поиска луча может быть расширен с помощью языковой модели n-граммов. Простой подход - переоценивать последовательность слов каждый раз, когда достигается маркер конца слова (пробел). Однако это полагается на модель для предсказания полных слов без орфографических ошибок.
Лучшим подходом является использование декодирования поиска по префиксу, которое включает информацию об уровне подслова во время процесса декодирования с использованием префиксов языковой модели. Преобразование языковой модели на уровне слов в модель «уровня меток» или модель на основе символов выполняется путем представления выходной последовательности в виде конкатенации самой длинной завершенной последовательности слов и оставшегося префикса слова, обозначенных как w и p соответственно. Функция для вычисления вероятности следующей метки при текущей последовательности принимает следующий вид:
P (k | y) = ∑wJ ∈ (p + k)∗ Pγ (wJ | W) / ∑wJ ∈p∗ Pγ (w| W) (12.17)
где P (w | W) - вероятность перехода истории слова из W в w, p∗ - набор словарных слов с префиксом p, а γ - вес языковой модели.
Во время декодирования вычисляются вероятности префиксов последовательности с возможностью завершить текущий префикс или продолжить его расширение. Во время поиска луча вероятность состояния гипотезы изменяется, чтобы также зависеть от вероятности префикса, словарной статьи или языковой модели n-грамм при определении вероятности расширения.
Этот метод основан на алгоритме распространения вперед-назад, где вычисление растет экспоненциально с увеличением количества состояний и временных шагов. Мы можем повысить эффективность декодирования, отсекая выходную последовательность, удаляя все выходы, где вероятность пустого токена превышает заданный порог. Поскольку активация вывода имеет тенденцию быть «пиковой», это резко снижает количество рассматриваемых состояний и постоянно превосходит декодирование наилучшего пути.
Этот алгоритм можно использовать без языковой модели, установив вероятности равными 1. Алгоритм префикса, представленный в [Han + 14b], приведен в алгоритме 2.
Алгоритм 2: поиск луча префикса CTC
Input: Pb(∅; x1:0) ← 1, Pnb(∅; x1:0) ← 0
Aprev ← {∅}
Result: most probable prefix in Aprev
begin
for t = 1 ...T do
Anext ← {}
for l ∈ Aprev do
for c ∈ Σ do
if c = blank then
Pb(l; x1:t) ← P(blank; xt)(Pb(l; x1:t−1) +Pnb(l; x1:t−1))
add l to Anext
else
l
+ ← concatenate l and c
if c = lend then
Pnb(l
+; x1:t) ← P(c; xt)Pb(l; x1:t−1)
Pnb(l; x1:t) ← P(c; xt)Pb(l; x1:t−1)
else if c = space then
Pnb(l
+; x1:t) ←
P(W(l
+)|W(l))α P(c; xt)(Pb(l; x1:t−1) +Pnb(l; x1:t−1))
else
Pnb(l
+; x1:t) ← P(c; xt)(Pb(l; x1:t−1) +Pnb(l; x1:t−1))
if l
+ not in Aprev then
Pb(l
+; x1:t) ← P(blank; xt)(Pb(l
+; x1:t−1) +Pnb(l
+; x1:t−1))
Pnb(l
+; x1:t) ← P(c; xt)Pnb(l
+; x1:t−1)
add l
+ to Anext
Aprev ← k most probable prefixes in Anext

Этот подход также требует нормализации длины, чтобы предотвратить смещение в сторону последовательностей с меньшим количеством переходов.
12.5.3. Декодирование внимания
Декодирование внимания уже дает наиболее вероятную последовательность с учетом предыдущих предсказаний. Следовательно, как было замечено ранее, здесь можно применить жадное декодирование, выдавая наиболее вероятный символ на каждом временном шаге. Однако, скорее всего, это не даст наиболее вероятную последовательность Cˆ.
Cˆ = argmaxC∈U∗ logP (C | X) (12.18)

Поиск луча также может применяться к моделям внимания в процессе декодирования.
Поскольку предыдущий временной шаг предоставляется в качестве входных данных для следующего прогноза, верхние n наиболее вероятных путей на каждом временном шаге могут сохраняться на каждом временном шаге. Поиск луча начинается с рассмотрения символа начала предложения <s>.
α (h, X) = α (g, X) + logP (c | gl − 1, X) (12.19)
где g - это частичная гипотеза в луче, а c - символ / признак, добавленный к g, что дает новую гипотезу h. Пример декодирования внимания при поиске луча показан на рис. 12.10.
Различные архитектуры стремились использовать эти дополнительные непарные данные в сквозных моделях ASR [Tos + 18]. Термин «слияние» был недавно введен в употребление, относящийся к интеграции этих языковых моделей в основную акустическую модель.
12.5.3.1. Мелкое слияние
Shallow fusion (первоначально использовавшийся для NMT) объединяет оценки моделей LM и ASR во время декодирования [Gul + 15]. Этот тип декодирования языковой модели включает модель внешнего языка во время поиска луча, чтобы учитывать вероятности слова или символа. Неглубокое слияние можно использовать с моделями языка, основанного на словах или символах, для определения вероятности конкретной последовательности.
Y∗ = argmaxY logP (Y | X) + λPLM (Y) (12.20)
Модели языка символов полезны для восстановления гипотез до того, как будет достигнута граница слова, или в качестве механизма восстановления оценок для символьных языков, таких как японский и китайский. Кроме того, символьные языковые модели могут предсказывать невидимые последовательности символов, чего не допускала бы словесная модель.
[image:]
Рис. 12.10: Пример декодирования поиска луча с размером луча 2 на трехсимвольном алфавите {a, b, c}. При декодировании внимания предыдущий временной шаг включается в предсказание следующего символа. Следовательно, вероятности зависят от выбранного пути. Лучшие пути на каждом временном шаге выделяются, причем более темный путь является лучшим прогнозом. Обратите внимание, как жадное декодирование этого примера может дать неоптимальный результат.
Неглубокое слияние было включено в модели RNN-T, что позволяет обучению CTC уменьшить независимость фрейма, а также включить смещение языковой модели в прогноз [He + 18].
12.5.4. Обучение комбинированной языковой модели
При включении нейронных языковых моделей в сквозную ASR быстро становится очевидным, что эти две модели можно оптимизировать вместе, используя акустическую информацию, а также лингвистическую информацию из больших текстовых корпусов. Двумя наиболее популярными методами совместной тренировки акустической и языковой моделей являются глубокий синтез и холодный синтез.
12.5.4.1. Глубокий синтез
Deep fusion [Gul + 15], с другой стороны, включает LM в акустическую модель (в частности, модель кодер-декодер), создавая комбинированную сеть.
Объединение сети осуществляется путем «слияния» скрытых состояний предварительно обученных моделей AM и LM и продолжения обучения для изучения «слитых» параметров. Во время этой процедуры обучения параметры LM и AM фиксируются, что сокращает затраты на вычисления и быстро сходится.
gt = σ (vTg sLMt + bg)
sDFt = [ct; st; gtsLMt
P (yt | h, Y1: (t − 1)) = softmax (WDFsDFt + bDF) (12.21)

где ct - вектор контекста, h - выходной сигнал кодировщика, а vg, bg, bDF и WDF все изучаются во время фазы продолжения обучения.
12.5.4.2. Холодный синтез
Холодный синтез [Шри + 17] расширяет идею глубокого синтеза, включая LM в процедуру обучения. Однако при холодном синтезе акустическая модель обучается с нуля с использованием предварительно обученной LM.
sLMt = DNN (dLMt)
sEDt = WED [dt; ct] + bED
gt = σ (Wg [sEDt; sLMt] + bg)
sCFt = [sEDt; gt ◦ sLMt]
rCFt = DNN (sCFt)
P (yt | h, Y1: (t − 1)) = softmax (WCFrCFt + bCF) (12.22)

Поскольку холодный синтез включает LM в учебный процесс с самого начала, при изменениях в LM требуется переподготовка. В исходной статье представлены средства переключения языковых моделей с использованием логитов LM вместо скрытых состояний LM; однако это увеличивает количество изученных параметров и вычислений.
12.5.5. Комбинированное декодирование CTC – Attention
Декодирование с использованием комбинированных архитектур CTC – внимание полагается на создание наиболее вероятной последовательности символов Cˆ. Объединение двух выходов нетривиально. Внимание создает последовательность выходных меток, в то время как CTC создает метку для каждого кадра. В [Wat + 17b] авторы предлагают два метода комбинирования выходных сигналов CTC и внимания: восстановление и однопроходное декодирование.
12.5.5.1. Восстановление
Восстановление основывается на двухэтапном методе. Первый шаг - создать набор полных гипотез на основе декодера внимания. Второй шаг - переоценить эти гипотезы на основе вероятностей CTC и внимания (для получения вероятностей CTC используется прямой алгоритм).
Cˆ = argmaxh∈Ωˆ {λαCTC (h, X) + (1 − λ) αATT (h, X)} (12.23)
12.5.6. Однопроходное декодирование
С другой стороны, однопроходное декодирование фокусируется на вычислении вероятностей частичных гипотез по мере генерации символов.
Языковая модель также может быть включена в процесс декодирования [HCW18], добавив в декодер дополнительный термин моделирования языка:
Cˆ = argmaxC∈U∗ {λ logPCTC (C | X) +
(1 − λ) logPATT (C | X) + γlogPLM (C)} (12.24)

Результат поиска луча может быть описан как:
α (h) = λαCTC (h) + (1 − λ) αATT (h) + γαLM (h) (12.25)
для каждой неполной гипотезы h.
Подсчитать оценки внимания и языковой модели несложно:
αATT (h) = αATT (g) + logPATT (c | g, X)
αLM (h) = αLM (g) + logPLM (c | g, X) (12.26)

где h = g; c, g - известная гипотеза, а c - символ, добавляемый к последовательности для генерации h.
CTC, однако, имеет больше нюансов из-за количества последовательностей, которые могут создавать последовательность символов. Следовательно, оценка CTC - это сумма всех последовательностей с префиксом h.
P (h, ... | X) = ∑v∈ (U 0 <EOS>)+ P (h; v | X) (12.27)
Оценка CTC становится:
αCTC (h) = logP (h, ... | X) (12.28)
12.6. Вложения речи и неконтролируемое распознавание речи
Количество доступных неконтролируемых данных может быть на несколько порядков больше, чем количество парных параллельных корпусов речи и текста. Таким образом, неконтролируемое распознавание речи и акустические вложения для обработки звука являются многообещающими областями исследований.
12.6.1. Речевые вложения
Одной из самых ранних работ по встраиванию в речь была [BH14]. В этой работе авторы использовали форму сиамской сети для обучения акустическим вложениям слов, где похоже звучащие слова (акустически похожие) сгруппированы рядом друг с другом в пространстве вложения. Таким образом, «слова рядом, если они звучат одинаково». При прямом моделировании слов парадигма распознавания речи уходит от попыток моделирования состояний в традиционной HMM.
Эта сеть обучается в двух частях: изначально модель классификации CNN обучается классифицировать произносимые слова в фиксированном сегменте звука (2 с). Во-вторых, эта сеть фиксирована и включена в сеть встраивания слов. Сеть встраивания слов обучена выравнивать встраивание правильного слова с акустическим вложением при разделении неправильных слов. Чтобы уменьшить размер входного пространства для встраивания всех слов с помощью n-граммов с буквами, используются только верхние 50 000 букв n-граммов, чтобы уменьшить размер входного пространства для встраивания (bag-of-letter- нграммы). Схема архитектуры представлена ​​на рис. 12.11.
[image:]
Рис. 12.11: Модель акустического внедрения, обученная с тройной потерей ранжирования для выравнивания акустических векторов и векторов слов из подсловных единиц
Пространство вложений дало такие сходства, как ((please, pleas)-пожалуйста, мольбы), ((plug, slug)-заглушка, слизень) и ((heart, art)-сердце, искусство).
Сиамская сеть CNN также использовалась в [KWL16], чтобы различать отдельные одинаковые и разные пары слов с учетом произнесенных экземпляров слов. Эта сеть достигла тех же результатов, что и модель классификации слов под строгим контролем.
12.6.2. Нехватка речи
В Unspeech [MB18] авторы использовали сиамскую сеть для обучения внедрений, используемых с акустическими моделями для адаптации говорящего, кластеризации высказываний и сравнения говорящих. Эта работа основана на предположении, что в похожих областях речи может быть один и тот же говорящий. Контексты истинных и ложных примеров говорящих взяты из соседних окон контекстов в том же высказывании или из отдельных файлов. Эта идея похожа на концепцию отрицательной выборки. Таким образом, эта сеть не ожидает, что похожие слова будут находиться в одном и том же пространстве встраивания, а скорее будет один и тот же говорящий. Архитектура представлена ​​на рис. 12.12.
12.6.3. Аудио Word2Vec
Одним из недостатков подхода CNN является то, что он требует аудиосегментов фиксированной длины. Audio Word2Vec [Chu + 16] использовал автокодировщик от последовательности к последовательности для изучения фиксированного представления произносимых слов переменной длины. Поскольку изученное представление является самим вводом, его можно изучить совершенно неконтролируемым образом, отсюда и ссылка на word2Vec. Таким образом, результирующая модель может кодировать акустические образцы для использования в системе запросов по примерам для слов. Тренировка модели не требует присмотра; однако создание встраиваемых слов требует знания границ слова в процессе встраивания.
Аудио Word2Vec был расширен в [WLL18] до уровня высказываний путем изучения метода сегментации. Этот метод является примером сегментарного автокодировщика «последовательность-последовательность» (SSAE). SSAE изучает шлюз сегментации, чтобы определять границы слова в высказывании, и автокодер от последовательности к последовательности, который изучает кодировку для каждого сегмента. Некоторое руководство необходимо, чтобы автокодировщик не разбивал высказывание на слишком много вложений; однако обучение соответствующей оценке не дифференцируемо. Для оценки этой величины используется обучение с подкреплением из-за недифференцируемости обучения дискретной переменной.
[image:]
Рис. 12.12: Вложения неречевой информации обучаются с использованием сиамской сети CNN (VGG16A), чтобы вычислить векторы вложения. Вычисляется скалярное произведение двух векторов, и логистические потери используются для оптимизации задачи двоичной классификации того, было ли контекстное окно истинным или ложным контекстным окном целевого объекта.
12.7. Практический пример
В этом тематическом исследовании мы продолжаем сосредотачиваться на построении моделей ASR на наборе данных Mozilla Common Voice.2) В этой главе мы уделяем особое внимание модели Deep Speech 2, которая обучает сквозную сеть с помощью CTC и гибридного внимания. Модель СТС.

2) https://voice.mozilla.org/en/data.
12.7.1. Программные инструменты и библиотеки
С момента выпуска статьи Deep Speech 2 было реализовано несколько реализаций архитектуры с открытым исходным кодом, при этом наиболее распространенным отличием является используемая среда глубокого обучения. Наиболее популярными являются реализация TensorFlow от Mozilla 3), реализация PaddlePaddle 4) и версия PyTorch5).
У каждого из них есть множество преимуществ и недостатков, среди которых есть framework глубокого обучения, объем необходимой предварительной обработки, RNN переменной длины по сравнению с фиксированной длиной, а также другие. Мы ориентируемся на реализацию PyTorch из-за ее простоты.
Одним из самых последних достижений стали модели внимания CTC +, в частности ESPnet.6) Этот набор инструментов ориентирован на сквозное распознавание речи и преобразование текста в речь. Он использует Chainer и PyTorch в качестве бэкэнда для набора инструментов и предоставляет рецепты в стиле Kaldi для некоторых из самых современных архитектур.
12.7.2. Глубокая речь 2
Используемая реализация Deep Speech 2 написана на PyTorch. Он включает в себя распараллеленный загрузчик данных для ускорения обучения модели, оптимизированную функцию потерь CTC, библиотеку CTC-декодирования с поддержкой языковой модели и дополнение данных для обучения акустической модели.
12.7.2.1. Подготовка данных
Для подготовки данных требуется либо структура каталогов, либо файл манифеста. В первом подходе каталог наборов данных структурирован следующим образом (рис. 12.13, 12.14 и 12.15).
Нет необходимости в фонетических словарях для символьных моделей; данные обрабатываются в спектрограмму, а затем преобразуются в тензор во время загрузки данных.
В этой реализации можно также использовать файл «манифеста» для определения используемых наборов данных. Манифест аналогичен структурам Kaldi и Sphinx и содержит список примеров в каждом разбиении

3) https://github.com/mozilla/DeepSpeech.
4) https://github.com/PaddlePaddle/DeepSpeech.
5) https://github.com/SeanNaren/deepspeech.pytorch
6) https://github.com/espnet/espnet.

набора данных. Файлы манифеста могут быть полезны для фильтрации более длинных файлов при использовании RNN переменной длины.
12.7.2.2. Обучение акустической модели
Сначала мы обучаем базовую модель с учетом конфигурации по умолчанию. Результирующая модель имеет два сверточных слоя и пять двунаправленных слоев GRU, что дает примерно 41 миллион обучаемых параметров. Мы также включаем этап увеличения во время тренировки, который вносит небольшие изменения в темп и усиление, чтобы уменьшить переобучение.
/ common voice
2 / train
3 txt /
4 train sample000000 . txt
5 train sample000001 . txt
6 ...
7 wav /
8 train s am pl e 0 0 0 0 0 0 . wav
9 train s am pl e 0 0 0 0 0 1 . wav
10 ...
11 / val
12 txt /
13 ...
14 wav /
15 ...
16 / test
17 txt /
18 ...
19 wav /
20 ...
21

Рис. 12.13: Структура каталогов для Deep Speech 2
1 / path / to / train s am pl e 0 0 0 0 0 0 . wav , / pat h / t o / t r ai n sample000000 . txt
2 / path / to / train s am pl e 0 0 0 0 0 1 . wav , / pat h / t o / t r ai n sample000001 . txt
3 ...
4

Рис. 12.14: Структура манифеста для обучающего набора для Deep Speech 2
1 python t r ai n . py −−train −manifest data / train manifest . csv −val−manifest data / val manifest . csv2
Рис. 12.15: Функция обучения Deep Speech 2
Мы обучаем все модели на графическом процессоре7) с ранней остановкой на основе WER проверочного набора. В нашем случае модель начала расходиться примерно через 15 эпох, как показано на рис. 12.16, и достигает наилучшего подтверждения WER 23,470. После обучения модели мы оцениваем лучшую модель в тестовом наборе, где мы достигаем среднего WER 22,611 и CER 7,757, используя жадное декодирование. Несколько примеров жадного декодирования обученной модели показаны на рис. 12.17.
[image:]
Рис. 12.16: Кривая обучения Deep Speech 2 с конфигурацией по умолчанию
1 Ref : i understand sheep they ’ re no longer a problem and they can
be good f riends
2 Hyp : i u n d e r st a n d s hee they ’ r e no l o n g e r y p roblem and t hey can be good friends
3 WER: 0. 2 1 4 CER: 0. 0 2 7
4
5 Ref : as he looked at the stone s he f e l t r eli e v e d f o r some reason
6 Hyp : a s he l o o ke d a t t h e st o n e s he f e l t r e l i e v e d f o r som ason
7 WER: 0. 3 3 3 CER: 0. 0 5 1
8

Рис. 12.17: Выход из базовой модели Deep Speech 2. Обратите внимание, сколько ошибок кажутся фонетическими и создают нелогичные слова, такие как shee и ashe.
12.7.3. Обучение языковой модели
Предсказания, основанные на символах, дают разумные расшифровки без языковой модели. Однако мы можем улучшить жадные прогнозы, предоставив языковую модель на этапе декодирования. Мы используем пакет ctcdecode8) для применения различных схем декодирования, который интегрирован в реализацию PyTorch Deep Speech 2.
Следует отметить, что в этой языковой модели также присутствует символ FST. FST действует как средство проверки правописания, обеспечивая производство слов.
7) Несмотря на то, что эту модель можно обучить на ЦП, это нереально из-за ресурсоемкого характера сверточных и повторяющихся слоев.
8) https://github.com/parlance/ctcdecode.

Схемы декодирования могут применяться для повышения частоты ошибок предсказаний.
Эти результаты приведены в Таблице 12.1.
Набор инструментов KenLM [Hea + 13] используется для обучения языковой модели n-грамм. Языковая модель создается из стенограмм корпуса обучения, чтобы обеспечить сопоставимые результаты с предыдущими тематическими исследованиями. На практике языковые модели обычно обучаются на очень больших учебных корпусах, таких как упомянутый ранее Common Crawl (рис. 12.18) 9).
1 kenlm / build / bin / lmplz −o 2 < training transcripts . txt >
c v 2gram lm . arpa
2
3 kenlm / build / bin / build binary cv 2gram lm . arpa cv 2gram lm . t rie
4

Рис. 12.18: Обучите 2-граммовую языковую модель с KenLM на стенограммах обучения.
Первая команда создает языковую модель ARPA из транскриптов, а вторая команда создает двоичную trie-структуру из языковой модели, используемой на этапе декодирования.
Мы определяем лучшую языковую модель для системы, оценивая их на проверочном наборе, и выбираем лучшую модель для применения к набору тестирования. В таблице 12.1 приведены WER и CER для различных языковых моделей.
Таблица 12.1: Результаты проверки для различных методов декодирования. Лучшие результаты выделены жирным шрифтом
	Метод декодирования
	WER
	CER

	Нет
	22,832
	8,029

	2 грамма
	12,919
	7,292

	3 грамма
	12,027
	6,990

	4 грамма
	11,865
	6,915

	5 грамм
	11,977
	6,955

После применения языковой модели с размером луча по умолчанию (ширина луча = 10) мы видим, что наша лучшая модель - это 4-граммовая модель. Теперь мы можем увеличить размер луча, чтобы оценить влияние на прогнозы. Результаты представлены в Таблице 12.2.
9) http://commoncrawl.org.
Таблица 12.2: Результаты проверки для балок различных размеров. Лучшие результаты выделены жирным шрифтом
	Метод декодирования
	WER
	CER

	4 грамм, пучок = 10
	11,865
	6,915

	4 грамм, ширина = 64
	7,742
	4,458

	4 грамма, ширина = 128
	6,939
	3,984

	4 грамм, пучок = 256
	6,288
	3,616

	4-граммовая, пучок = 512
	5,857
	3,375

1 Ref : i understand sheep they ’ re no longer a problem and they can
be good f riends
2 Hyp : i u n d e r st a n d s hee p they ’ r e no l o n g e r a p roblem and t h e y can
be good f riends
3 WER: 0 . 0 CER: 0 . 0
4
5 Ref : as he looked at the stone s he f e l t r eli e v e d f o r some reason
6 Hyp : a s he l o o ke d a t t h e st o n e s he f e l t r e l i e v e d f o r some a s
7 WER: 0. 0 8 3 CER: 0. 0 6 8
8
9

Рис. 12.19: Результат теста с расшифровкой языковой модели. Обратите внимание, что многие фонетические ошибки исправляются при включении языковой модели во время декодирования; однако он также может вызывать различные ошибки. Во втором примере жадное декодирование выводит вместо причины, но после применения языковой модели, гипотеза уменьшила это до as, уменьшив WER и увеличив CER для этого примера
Время расчета линейно увеличивается с размером пучка. На практике лучше всего выбирать размер луча, который является хорошим компромиссом между производительностью и качеством.
После применения нашего лучшего LM (4 грамма) с размером пучка 512 к испытательному набору мы достигли WER 5,587 и CER 3,232. Некоторые примеры декодированного вывода приведены на рис. 12.19.
12.7.4. ESPnet
ESPnet10) - это набор инструментов для сквозной обработки речи, вдохновленный Kaldi. Он включает гибридные архитектуры CTC – внимание, в основном те, что содержатся в [KHW17] и [Wat + 17b].
10) https://github.com/espnet/espnet.
Большая часть инструментария ориентирована на скрипты bash, похож на Kaldi, с бэкэндами Chainer и PyTorch. В этой части тематического исследования гибридная архитектура CTC – внимание обучается на наборе данных Common Voice с использованием инструментария ESPnet.
12.7.4.1. Подготовка данных
Подготовка данных очень похожа на Kaldi с использованием Kaldi для некоторой предварительной обработки. Основное отличие - отсутствие фонетической лексики и словарей, необходимых в Kaldi. Мы генерируем функции MFCC и храним их в формате JSON.
Этот формат содержит целевой транскрипт, токенизированный транскрипт, расположение функций и некоторую дополнительную информацию для различных компонентов обучения.
Пример форматированных обучающих данных показан на рис. 12.20.
После извлечения функций и создания входного файла сеть готова к обучению.
12.7.4.2. Обучение модели
Процедура обучения модели также в некоторой степени соответствует сценариям Kaldi; однако, как только функции извлечены, мы запускаем обучающие сценарии.
Обучаемая модель представляет собой четырехуровневый двунаправленный кодер LSTM и однослойный однонаправленный декодер LSTM. Мы обучаем эту модель с помощью Adadelta в течение 20 эпох на одном графическом процессоре. Полный список обучающих аргументов показан на рис. 12.21.
Во время процедуры обучения можно контролировать потери как для CTC, так и для внимания, чтобы гарантировать постоянство сходимости. Общие потери для обучения и проверки - это взвешенная сумма двух компонентов. Мы также замечаем, что тенденция потери валидации с потерей обучающих данных до последней эпохи. В этом примере мы установили жесткую остановку по вычислительным причинам для количества запущенных эпох.
Чтобы получить нашу лучшую модель, мы будем продолжать обучение до тех пор, пока валидация не будет последовательно расходиться с потерями в обучении, и выберем модель, которая лучше всего работает с данными валидации (рис. 12.22).
Кривые точности, показанные на рис. 12.23, отображают производительность сети в процессе обучения. Первые две эпохи показывают значительный прогресс на ранних стадиях с небольшими улучшениями по мере продвижения обучения. Наша лучшая модель в обучении достигает WER 12,07 на данных проверки.
Мы можем проверить выходные веса внимания во время процесса декодирования, построив график веса каждого временного шага во время декодирования. Визуализация внимания, как и прежде, показывает, на какую часть входных данных обращаются во время вывода. Это показано на рис. 12.24. Мы замечаем, что вывод обычно коррелирует с входным аудиофайлом, давая выровненный вывод, который способен сегментировать звук, а также обрабатывать смещения во времени. На ранних этапах мы замечаем некоторые перерывы в выравнивании внимания к вводу, тогда как в последнем случае выравнивания внимания кажутся плавно выровненными с вводом.
1 {
2 ”utts”: {
3 ”cv − valid −dev − sample −000000”: {
4 ”ввод”: [
5 {
6 «подвиг»: ». действительный dev / deltafalse / feats .1. ковчег
: 27 ”,
7 «имя»: «и н п ут 1»,
8 ”форма”: [
9 502, г.
10 83
11]
12}
13],
14 ”выход”: [
15 {
16 ”name”: “t a r g et 1”,
17 ”форма”: [
18 55,
19 31
20],
21 ”t e x t”: ”БУДЬТЕ ОСТОРОЖНЫ С СВОИМИ ПРОГНОЗИКАМИ
СКАЗАЛ ЧУЖИЙ »,
22 ”жетон”: ”B E <пробел> ОСТОРОЖНО <пробел> WI T
H <пробел> ВАШ <пробел> П РОГНО С Т И КАТ И НА S <
пробел> SA ID <пробел> THE <пробел> S T R A N G E R ”,
23 ”t o k e ni d”: ”5 8 3 6 4 21 8 9 24 15 3 26 12 23 11
3 28 18 24 21 3 19 21 18 10 17 18 22 23 12 6 4 23 12 18 17 22
3 22 4 12 7 3 23 11 8 3 22 23 21 4 17 10 8 21 ”
24}
25],
26 ”utt2spk”: ”cv-valid -dev-sample -000000”
27},
28 ...
29}
30

Рис. 12.20: Формат входного файла data.json для обучения ESPnet
1 python as r t r ai n . py −−backend pytorch −−outdi r exp / re s ult s −−dict
data / lang 1char / train nodev units . txt −−minibatches 0 −−
resume −−train −j s o n dump / c v valid train / deltafalse / data . json
−−valid −j s o n dump / c v valid dev / deltafalse / data . json −−etype
blstmp −−elayers 4 −−eunit s 320 −−ep rojs 320 −−subsample 1
2 2 1 1 −−dlayers 1 −−dunits 300 −−atype location −−adim 320
−−aconv−chans 10 −−aconv−f i l t s 100 −−mtlalpha 0.5 −−batch−
size 30 −−maxlen−in 800 −−maxlen−out 150 −−sampling−
probability 0.0 −−opt adadelta −−epochs 20

Рис. 12.21: Команда обучения для ESPnet
[image:]
Рис. 12.22: Потери во время тренировки
[image:]
Рис. 12.23: Кривые точности обучения и проверки для модели
Наша базовая модель достигает WER 12,34 и CER 6,25 на испытательном наборе с жадным декодированием (размер луча 1). При включении поиска луча 20 (выбор ESPnet по умолчанию) в прогнозы на тестовой выборке мы уменьшаем WER до 11,56 и CER до 5,80. Мы оставляем настройку размера луча и включение языковой модели в качестве упражнения. Обратите внимание на значительное улучшение, когда мы добавили это в архитектуру Deep Speech 2.
[image:][image:]

Рис. 12.24: Веса внимания для одного файла на входном аудиосигнале после (а) 1-й эпохи и (б) после 20-й эпохи
12.7.5. Результаты
Теперь мы приводим краткое изложение методов, оцениваемых в этом тематическом исследовании. Результаты тестирования представлены в таблице 12.3.
Таблица 12.3: Производительность сквозного распознавания речи на тестовом наборе Common Voice (лучший результат выделен)
	Подход
	WER

	Deep Speech 2 (без декодирования)
	22,83

	Deep Speech 2 (4-граммовый LM, размер луча 512)
	5,59

	ESPnet (без декодирования)
	12,34

	ESPnet (без LM, размер луча 20)
	11,56

	Kaldi TDNN (Глава 8)
	4.44

В целом, с моделью CTC – внимание мы получаем более быструю и стабильную конвергенцию и более низкий WER для базовой акустической модели по сравнению с базовой линией Deep Speech 2 (WER 22,83).
Хотя этот результат не лучше, чем полученный с Калди в гл. 8, результаты между Deep Speech 2 (с языковой моделью) и моделями Kaldi сопоставимы, даже без модели лексикона. Процедура обучения более прямолинейна, чем шаги обучения, необходимые для традиционных подходов к ASR, такие как устранение требования итеративного обучения и согласования. Дополнительные преимущества также можно получить от включения языковой модели во время декодирования, чтобы обеспечить убедительные результаты без значительных лингвистических ресурсов.
12.7.6. Упражнения для читателей и практиков
Вот некоторые другие интересные задачи, которые читатели и практики могут попробовать самостоятельно:
1. Какие изменения необходимы для обучения модели Deep Speech 2 новому языку?
2. Каким образом обучение языковой модели повлияет на большее количество данных?
3. Может ли включение протоколов тестирования улучшить результаты валидационных данных? А как насчет данных тестирования?
4. Не искажает ли включение стенограмм тестирования в языковую модель достоверность результатов?
5. Как можно включить языковую модель RNN в процесс декодирования Deep Speech 2? Для ESPnet?
6. Выполните поиск по сетке для размера пучка на модели ESPnet.

image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image11.emf

image12.emf

image13.emf

image14.emf

image15.emf

image16.emf

image17.emf

image1.emf

image2.emf

image3.emf

image4.emf

image5.emf

